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Abstract

The study tests the hypothesis that conditional probability judgments can be influenced by causal

links between the target event and the evidence even when the statistical relations among variables

are held constant. Three experiments varied the causal structure relating three variables and found

that (a) the target event was perceived as more probable when it was linked to evidence by a causal

chain than when both variables shared a common cause; (b) predictive chains in which evidence is a

cause of the hypothesis gave rise to higher judgments than diagnostic chains in which evidence is an

effect of the hypothesis; and (c) direct chains gave rise to higher judgments than indirect chains. A

Bayesian learning model was applied to our data but failed to explain them. An explanation-based

hypothesis stating that statistical information will affect judgments only to the extent that it changes

beliefs about causal structure is consistent with the results.
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1. Introduction

There is wide consensus that causal beliefs and assessments of probability are closely

connected in both philosophy (e.g., Spirtes, Glymour, & Scheines, 1993; Suppes, 1970) and

cognitive science (e.g., Cheng, 1997; Rehder, 2009; reviewed in Sloman, 2005). Is one

given priority when people make judgments? In the study of cognition, at least two views

are possible. One is that people make judgments of probability using prior expectations

based on a variety of information sources, of which statements about causal structure are
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just one type. We call this the Bayesian view. On this view, people make judgments by com-

bining any available data with whatever prior beliefs they may have, including those about

causal structure. One contrasting view is that judgments are derived directly from knowl-

edge of causal structure rather than from a collection of probabilistic information where

structure has no special status. We call this the explanation-based view. On this view, judg-

ment processes operate on the assumption that causal structure is what makes the world go

round and observable quantities like probability and correlation are merely reflections of it

(e.g., Hume, 1976; Pearl, 2000).

The explanation-based view is a staple in the psychological literature (reviewed in

Sloman, 2005). An early proponent was Ajzen (1977), who argued that people use a ‘‘cau-

sality heuristic’’ when making probability judgments, relying on causal knowledge while

neglecting noncausal statistical information except to the extent that it changes their causal

beliefs. This causality heuristic implies that people ignore quantitative data concerning a

causal relation when they already have qualitative information about it.

A causality heuristic, like all heuristics, is often effective but can lead to systematic errors

in some situations. For example, Tversky and Kahneman (1983) showed a conjunction fal-

lacy resulting from a causal relation between the two components of a conjunction. Thus,

the statement ‘‘a randomly selected male has had one or more heart attacks’’ was judged

less likely than ‘‘a randomly selected male has had one or more heart attacks and is over

55 years old.’’ In general, an event seems more likely when a potential cause is presented in

the conjunction, whereas the conjunction rule states that a conjunction cannot be more prob-

able than one of its constituents. Kahneman and Tversky’s result can be explained by the

existence of an explanatory relation between the constituents: Having a heart attack can be

explained by being more than 55 years old (Fabre, Caverni, & Jungermann, 1995, 1997).

Indeed, Crisp and Feeney (2009) found that the strength of the causal connection between

constituent events directly affected the magnitude of the causal conjunction fallacy.

Causality has also been investigated in the study of subadditivity (Tversky & Koehler,

1994). Implicit subadditivity refers to the fact that a hypothesis A is judged less likely when

its components (A1 and A2) are not mentioned than when its description is unpacked into

components: PðAÞ<PðA1 [A2Þ. For instance, Rottenstreich and Tversky (1997) compared

the probability of a packed description ‘‘homicide’’ with one unpacked either according to

the causal agent ‘‘homicide by an acquaintance or by a stranger’’ or according to the time

of occurrence ‘‘daytime homicide or nighttime homicide.’’ Results indicated more implicit

subadditivity in the causal partition. Rottenstreich and Tversky conjectured that a causal

partition brings to mind more possibilities than a temporal partition. A causal partition also

provides an explanation for the occurrence of the event.

These studies support the idea that people rely on causal explanations when they are

making judgments. Further support for this view comes from Pennington and Hastie

(1993) who showed that an event is given a higher probability if the evidence is pre-

sented in chronological order (rather than random order), enabling the construction of an

explanatory story. Some studies have shown how causal explanations are generated and

how they affect the probability of a focal scenario. Dougherty, Gettys, and Thomas

(1997) investigated the role of mental simulation in judgments of likelihood. First, they
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showed that simulating a large number of competing causal scenarios for an outcome

diminished the probability of the focal scenario. Second, they found that participants

appeared to generate several causal scenarios initially and then rejected the less likely

causal scenarios before making their probability judgment. Thus, the probability of a

scenario depended on both the number and likelihood of causal scenarios imagined by

the participant. Further support for the explanation-based view comes from findings that,

when interpreting evidence, explanations tend to dominate. Chapman and Chapman

(1969) present a classic demonstration that people observe ‘‘illusory correlations’’ that

are consistent with their prior beliefs but inconsistent with the data. Brem and Rips

(2000) show that explanations take priority over data in argument.

So reliance on causal explanation can lead to neglect of data. As another example of this

phenomenon, highlighting causal relations affects the extent to which people neglect base

rates in probability judgment. Ajzen (1977) found that probability judgments were influ-

enced by base rates of a target outcome in the population only to the extent that the base

rates had causal implications for the object of judgment. Tversky and Kahneman (1982) also

found less base-rate neglect with causal than with incidental base rates (however, Sloman,

2005, reports a failure to replicate using one of Tversky and Kahneman’s items).

Proponents of the contrasting Bayesian view in the study of causality and judgment

include Krynski and Tenenbaum (2007), who applied a causal Bayesian net framework to

base-rate neglect, arguing that its advantage over a purely statistical framework is that it

explains how judgments are made with limited statistical data. The framework states that

people process data in three steps: (a) they construct a causal model; (b) they assign parame-

ters to the variables; and (c) they infer probabilities. Parameters are assumed to be estimated

from statistical information provided in the task in conjunction with background knowledge.

In studies of base-rate neglect, they found that statistics that map onto parameters of a causal

model were used appropriately.

2. Current studies

To compare the Bayesian and explanation-based positions, we ran three experiments that

obtained conditional probability judgments with various causal structures while holding sta-

tistical information constant. We made sure that the statistical information was highly avail-

able and salient. Specifically, we provided participants with two pieces of information: the

causal links among a set of variables and statistical information about relationships between

their values. We then asked them to judge the probability of one variable given the value

of another. The statistical information provided was sufficient to calculate the desired

conditional probability.

The Bayesian view has some leeway in what it predicts in this situation because it allows

that people might have various prior beliefs about the variables and the strengths of the cau-

sal links they are given. However, it does impose some constraints on judgment. For

instance, judgments should be closer to the statistical information if there is more of it than

if there is less.1 Another constraint that we discuss in detail below is that, given reasonable
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assumptions, judgments associated with common-cause structures must be in between judg-

ments associated with forward and backward chains.

The explanation-based hypothesis proposes that people construct explanations of data

and these explanations then serve as the basis of judgment without further regard to the sta-

tistics on which they are based. The hypothesis assumes that an explanation is constructed

from prior knowledge about causal mechanisms that posits some combination of causes,

enablers, disablers, and preventers to describe how the data were generated. This explana-

tion serves as a summary representation of the data but can take a life of its own if the data

are not entirely consistent with it. This view suggests that people will make judgments based

on qualitative causal structure that encodes explanatory relations and will neglect the origi-

nal data. This view predicts, like the causality heuristic, that people will be directly influ-

enced by causal structure and statistical information will affect their judgments only to the

extent that it changes their beliefs about causal structure. Causal structure will mediate the

relation between data and judgment so that different causal beliefs could lead to different

judgments even when the underlying statistical support is identical.

We will compare situations where the target event and the conditioning event (hereafter

referred to as the evidence) are linked by a causal chain (one is a cause of the other) and sit-

uations where the target event and the evidence are not directly linked (they are effects of a

common cause). The explanation-based view suggests that the easier it is to construct an

explanation, the more influence the explanation will have on judgment. Events that are caus-

ally related by the explanation will be perceived as more highly correlated. Explanations of

a target event are easier to generate when the event is a cause or an effect of the evidence

than when they are both effects of a common cause. When a chain of causation relates the

target event and evidence, the target can be explained by a single mechanism that leads from

the evidence. But when they share a common cause, two mechanisms are necessary, one

from the common cause to the target and the other from the common cause to the evidence.

Even if the details of the two mechanisms are identical, each must be considered separately.

Because of this difference in ease of explanation, the explanation-based hypothesis predicts

that judgments of the conditional probability of the event given the evidence will be higher

in the case of a causal chain than in the case of a common cause.

When the evidence and the target event are linked by a causal chain, judging the proba-

bility of the event requires an inference from the evidence to the event. This inference can

be in a predictive direction, where the evidence is a cause of the target, or in a diagnostic

direction, the evidence is an effect of the target. For example, judging the probability that a

woman is physically fit given that she participates in a sport would be a predictive inference,

whereas judging the probability that a woman participates in a sport given that she is fit

would be diagnostic. These two types of inferences are asymmetric: Inferences from effect

to cause tend to use more information about alternative causes than inferences from cause to

effect (Fernbach, Darlow, & Sloman, 2010, 2011). In that sense, predictive inferences are

easier than diagnostic ones. They also take less time (Fernbach et al., 2010). White (2006)

described causal asymmetry as the general tendency to overestimate the force exerted by a

cause on an effect and to underestimate the corresponding force exerted by an effect on its

cause. Tversky and Kahneman (1982) also provide evidence that the probability of an event
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is higher when the inference is predictive than when it is diagnostic. Although Fernbach

et al. (2011) failed to replicate Tversky and Kahneman’s specific effect, they did find that

predictive inferences were higher than diagnostic ones in the presence of strong alternative

causes of the effect. They also showed that even a normative analysis will more often than

not predict that predictive inferences will be higher than diagnostic inferences. Roughly

speaking, to the extent that effects have alternative causes, a cause will provide more evi-

dence for its effect than vice versa. For these reasons, we expect predictive questions to lead

to higher judgments than diagnostic ones.

In our experiments, we held the correlations among the variables constant. In Experi-

ments 1 and 2, we did so by providing participants with a summary description of the corre-

lation. In Experiment 3, statistical information was implicit by presenting a series of

observed events.

3. Experiment 1

This experiment aims to investigate whether causal models can affect probability judg-

ments while statistical information is held constant. More precisely, we will vary the causal

models connecting the variables in a scenario. Drawing from the explanation-based account

of the role of causal structure, our hypotheses are twofold:

1. The judged probability of one event given another will be higher if there is a cau-

sal path from one to the other (whether this path is in a diagnostic or predictive

direction). We will compare the case in which the evidence and the target event

are linked by a causal chain with the case in which they are both effects of a com-

mon cause. Our hypothesis is that the probability of the target event will be lower

in the second case because of the absence of a direct causal path between the

elements. A third variable will be used to build the causal models but it will not

be mentioned in the judgment task.

2. Our second hypothesis deals with the nature of the causal chains. When assessing

the probability of the target event, two different types of inferences can be defined

depending on the direction of the causal chain. If the evidence is a cause of the

event to be judged, the inference is predictive: People have to judge the probability

of an effect knowing a cause. But if the evidence is an effect of the event, the

inference is diagnostic: People have to judge the probability of a cause knowing an

effect. We expect predictive chains to give rise to higher probability judgments

than diagnostic chains.

3.1. Participants

A total of 144 students of the University of Toulouse le Mirail participated in this experi-

ment. They were recruited on a voluntary basis in the university library.
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3.2. Materials

Participants were tested in French. They were presented with a questionnaire divided into

three parts: a presentation of the task, a training scenario, and the experimental scenarios.

Table 1 illustrates the organization of a scenario. First, we presented three variables: A, B,

and C. We indicated their statistical correlation by saying that in 40% of cases, A, B, and C

Table 1

Organization of the common-cause scenario, Experiment 1

Presentation of 3 variables Recently, some researchers have revealed the existence of a statistical relation

between muscle tone, level of magnesium, and the quality of sleep.

Statistical correlation In 40% of people, muscle tone, level of magnesium, and the quality of sleep are

all high.

In 40% of people, muscle tone, level of magnesium, and the quality of sleep are

all low.

In 20% of people, those variables have different levels: some are high whereas

others are low.

Causal model The researchers found an explanation of the existence of this statistical relation:

An increase in the level of magnesium leads to an increase in the quality of

sleep.

An increase in the level of magnesium leads to an increase in muscle tone.

Diagram This explanation can be represented by the following diagram:

Level of magnesium

Quality of sleep 

   Muscle tone 
Comprehension Questions With the help of the previous information, please respond to the following ques-

tions:

The level of magnesium has a direct effect on:

h The quality of sleep

hMuscle tone

hNone of them

The quality of sleep has a direct effect on:

h Level of magnesium

h Muscle tone

h None of them

Muscle tone has a direct effect on:

h The quality of sleep

h Level of magnesium

h None of them

Evidence Mary, 35 years-old, has good quality of sleep.

Probability judgment According to you, what is the probability that Mary has good muscle tone?
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are low, in 40% of cases, A, B, and C are high, and in 20% of cases, the variables have dif-

ferent levels: Some are high whereas others are low. Then we presented the causal model

relating the three variables. We illustrated this model with a diagram and asked some ques-

tions to check the understanding of the model. Finally, we presented a situation where one

variable was present (such as A) and we asked for the probability of another (such as B)

without saying anything about C. The participants had to make their judgments on graduated

scales going from 0% to 100%. Materials translated from French to English appear in

Appendix A.

3.3. Design

We manipulated the causal model presented. In two conditions, the evidence A and the

target B were related by a causal chain. In one case, A was a cause of B (a predictive chain)

and, in the other, A was an effect of B (a diagnostic chain). In another condition, A and B
were effects of a common cause C (common-cause condition). We also tested a condition

with no causal model (control condition). Table 2 displays the four conditions.

The questionnaire was composed of eight different scenarios. Each participant saw each

condition two times, with each presentation involving a different scenario. The scenarios

presented real-world variables so that people could represent them easily. As we wanted

people to believe the causal models, we presented the models as scientific findings. Also,

the variables were chosen to minimize participants’ prior knowledge about the existence of

causal links between them.

3.4. Results

Judgments in the common-cause condition were the lowest followed by the control and

diagnostic chains. Judgments in the predictive chain condition were highest (see Fig. 1). A

repeated-measures analysis of variance showed a significant effect of condition,

F(3, 429) = 16.79, MSE = 212, g2
p = .11, p < .001. Planned comparisons were used to test

our specific hypotheses. As expected, causal chains gave rise to higher probability judg-

ments than common cause models, t(143) = 31.02, d = 0.56, p < .001. Within causal

chains, predictive chains gave rise to higher probability judgments than diagnostic chains,

t(143) = )2.79, d = 0.23, p = .01. The control condition gave higher judgments than the

common-cause condition t(143) = 4.49, d = 0.37, p < .00, but lower than predictive chains

t(143) = )2.45 , d = 0.20, p = .02.

Table 2

Causal models presented in each experimental condition, Experiment 1

Experimental condition Causal model

Predictive chain A fi C fi B
Diagnostic chain B fi C fi A
Common cause A ‹ C fi B
Control condition No causal model
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Further analyses were conducted in order to investigate individual differences. We used

spss18’s (IBM SPSS Inc., Chicago, IL, USA) two-step classification procedure to sort

participants according to the deviations from their own base-level judgment (computed by

intraindividual averaging over the four conditions). In the preclustering step of the proce-

dure, individuals are arranged into subclusters using a clustering feature tree (Zhang, Rama-

krishnon, & Livny, 1996). In the second step, subclusters are grouped into clusters using a

hierarchical method. The target number of clusters is automatically selected using the

Bayesian Information Criterion computed over the models (see SPSS, Inc., 2001, for more

details on the algorithms). Three groups emerged, hereafter referred to as Cluster 1

(n = 58), Cluster 2 (n = 57), and Cluster 3 (n = 29). Overall, the three clusters did not sig-

nificantly differ in the size of the deviation but did in the patterns of the deviations, as shown

by the significant Cluster · Condition interaction, F(6, 423) = 40.91, MSE = 136.1,

g2
p = .37 (see Fig. 2). Within each cluster, the conditions were rated differently,

Fig. 1. Mean probability judgments with 95% confidence intervals, as a function of causal models, Experiment 1.

Fig. 2. Mean probability judgments with 95% confidence intervals, as a function of experimental conditions and

clusters, Experiment 1.
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F(3, 171) = 43.5, MSE = 141.8, g2
p = .43; F(3, 168) = 16.4, MSE = 127.7, g2

p = .23;

F(3, 84) = 45.5, MSE = 141.3, g2
p = .62; all p < .01. Bonferroni post hoc analyses were

used to characterize the differences among patterns. Cluster 1 participants rated the common

cause lower than any other condition (all p < .01, all Cohen’s d > 0.62), but the two chain

types were not significantly different (d = 0.18). In Cluster 2, the three target structures

were not rated differently (all pairwise comparisons ns, all d < 0.31), but the control condi-

tion was rated below all other conditions (p < .01, all d > 0.53). In Cluster 3, predictive

chains were rated higher than all other conditions (p < .01, all d > 0.95), and diagnostic

chains were rated the lowest, significantly lower than the control (p < .01, d = 1.15), mar-

ginally significantly lower than the common cause (p = .053, d = 0.57). Overall, probability

judgments were influenced by causal models in 65% of the participants (Clusters 1 and 3).

3.5. Conclusion

Experiment 1 showed that participants could be influenced by the causal relations between

the evidence and the event to be judged despite a constant statistical relation between them.

Results are consistent with the explanation-based hypotheses. Indeed, probability judgments

seemed to depend on the ease of constructing causal explanations. The common-cause condi-

tion gave the lowest judgments. This may have occurred because an event is perceived to pro-

vide less evidential support in the absence of a direct causal path to the target. Predictive chains

gave higher judgments than diagnostic chains, providing more evidence of a causal asymmetry

in judgment. One possibility is that judgments in the control condition were derived directly

from correlations because no causal explanation was available. If so, the conditional probability

judgments are surprisingly low. The most reasonable estimate of the conditional probabilities

from the data is around 87%,2 whereas the mean judgment was only 52%. Another possibility

is that people inferred their own causal models from the cover stories. In that case, the mean

judgment could reflect the average of a variety of different assumed causal models.

Our clustering solution indicates that a plurality of participants conform to this general

pattern (Cluster 1). Another large group was not affected by causal structure (Cluster 2)

and could have focused entirely on the correlational information. A third smaller group

(Cluster 3) conformed to Bayesian prescriptions on the assumption that they consistently

treated predictive links as stronger than diagnostic links.

4. Experiment 2

In this experiment, we attempted to replicate the results of Experiment 1 and extend them

by investigating the effect of causal proximity in judgment. Does the presence or absence of

an intermediate variable between the evidence and target events affect judgment?

In Experiment 1, when the two variables were related by a causal chain, a third variable

was introduced as a mediating variable. This mediating variable was only used to describe

the causal model but nothing was said about it in the judgment task. We do not know

whether people thought it was present or absent. If they apply a principle of indifference
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rather than inferring its value based on the evidence event, they may conclude that it has a

50% of chance of being present. They may also have thought it was absent because nothing

was said about it. Either way, this may have increased their judgments and so, putting this

variable C at the end of the chain (A fi B fi C) rather than between the evidence and the

uncertain event (A fi C fi B) may significantly enhance the perceived probability of the

uncertain event given the evidence P(B|A). Experiment 2 thus included the conditions of

Experiment 1 and also contrasted probability judgments of indirect and direct causal chains.

As in Experiment 1, we predict higher judgments in the chain conditions (because the

explanations are easier to generate) and we predict the causal asymmetry effect.

4.1. Participants

A total of 180 students of the University of Toulouse le Mirail participated in this experi-

ment. They were recruited on a voluntary basis in the university library.

4.2. Materials and procedure

We used exactly the same procedure as in Experiment 1. The questionnaires had the same

structure.

4.3. Design

In addition to the four conditions of Experiment 1, two conditions were created: diagnos-

tic and predictive direct chains. Table 3 summarizes the six conditions. The questionnaires

presented six different scenarios so that each participant was in all conditions, each with a

different scenario.

4.4. Results

Results show an effect of causal structure, F(5, 895) = 7.51, MSE = 320, g2
p = .04,

p < .001 (see Fig. 3). Planned comparisons were used to test our specific hypotheses. The

findings of Experiment 1 fully replicated. Causal chains led to higher judgments than

common-cause models, t(179) = )3.10, d = 0.23, p=.002, and predictive chains led to

Table 3

Causal models presented in each experimental condition, Experiment 2

Experimental condition Causal model

Predictive direct chain A fi B fi C
Diagnostic direct chain B fi A fi C
Predictive indirect chain A fi C fi B
Diagnostic indirect chain B fi C fi A
Common cause A ‹ C fi B
Control No causal model
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higher judgments than diagnostic chains, t(179) = )2.87, d = 0.21, p = .01. As expected,

direct chains led to higher judgments than nondirect chains, t(179) = )3.87, d = 0.29,

p < .001. The control condition differed significantly from just one condition, the direct

predictive chain, t(179) = )4.19, d = 0.31, p = .000.

The existence of individual differences in participants was assessed using a two-step clas-

sification according to the deviations from their mean judgments over the six conditions as

in Experiment 1. The procedure resulted in two groups, Clusters 1 and 2, that did not differ

in their means but in the pattern of judgments over conditions, as shown by the significant

Cluster · Condition interaction, F(5, 890) = 32.5, MSE = 272, g2
p = .15 (see Fig. 4).

Within each cluster, the conditions were rated differently, F(5, 320) = 24.1, MSE = 434,

Fig. 3. Mean probability judgments with 95% confidence intervals, as a function of causal models, Experiment 2.

Fig. 4. Mean probability judgments with 95% confidence intervals, as a function of experimental conditions and

clusters, Experiment 2.
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g2
p = .27; F(5, 570) = 4.16, MSE = 180, g2

p = .04; all p < .01. As in Experiment 1,

Bonferroni post hoc tests showed that the predictive and diagnostic directions of inference

were significantly different in Cluster 1—predictive inference led to higher judgments both

when comparing chains (p = .03, d = 0.58) or direct causes (p < .01, d = 0.71). In contrast,

in Cluster 2 participants, diagnostic and predictive inferences were not significantly differ-

ent, whether direct or chain inferences were considered (all d < 0.17).

Thus, as in Experiment 1, one group of participants (Cluster 1, 36% of all participants)

was influenced by the direction of the inference. However, in Experiment 2, the other group

was still sensitive to the global structure, that is, common cause above causal chains

(p < .01, all d > 0.34) and common cause above direct predictive (p = .027, d = 0.41). The

third rating pattern observed in Experiment 1 did not appear in Experiment 2.

4.5. Conclusion

In addition to the replication of previous findings, this experiment revealed that the

absence of an intermediate variable between the target event and the evidence led to an

increase in perceived probability. However, one could argue that our way of presenting the

statistical information was not precise enough. Indeed, the statement ‘‘In 20% of cases,

some variables are high whereas some are low’’ refers to six different cases and we did not

specify that each case has the same probability. When learning the causal models, people

may have overestimated the probability of some of the six cases. Another explanation for

the results is that if people combined statistical evidence with their prior beliefs, the partici-

pants in Experiment 1 might have treated the statements about the evidence as very sparse

data and thereby changed their beliefs very little. Experiment 3 addresses these issues.

5. Experiment 3

In this experiment, to eliminate any ambiguity about the data being presented, we used a

different mode of presentation of the correlations among the three variables. Instead of

expressing them verbally, we presented a sample of observations in which the level of each

variable was indicated. In 40% of observations, the three variables were low; in 40% of

observations, they were high; in 20% of cases some were high and others low. Therefore,

the correlations were identical to those in the previous experiments. The advantage of this

method is that all cases are explicitly presented so that there cannot be any misinterpreta-

tion. The disadvantage is that it greatly increases demands on memory.

For half of the participants, the series of observations was long (60 observations), and for

the other half, the series was short (5 observations). By comparing these conditions, we can

measure how much use is made of the observations to update beliefs. To the degree that par-

ticipants did update their beliefs by observing the data, the long series should have more

influence than the short series. Except for how the data were presented, this experiment was

identical to Experiment 2. Table 4 indicates how long and short series were constructed

(‘‘+’’ = high level ⁄ ‘‘)’’ = low level). In the long series, 60 observations were presented:
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on 24 (40%) the three variables had high levels, on 24 (40%) the three variables had low

levels, and on 12 (20%) some variables were low whereas others were high (the six possibil-

ities were presented two times each). In short series, five observations were presented: on

two (40%) the three variables had high levels, on two (40%) the three variables had low

levels, and on one (20%) some variables were low whereas others were high (one of the

six cases was presented at random).

5.1. Participants

A total of 120 students of the University of Toulouse le Mirail participated in this experi-

ment. They were recruited on a voluntary basis in the university library. One of them was

chosen by drawing lots and received a gift.

5.2. Materials and procedure

This experiment consisted of a questionnaire displayed on a computer screen. The scenar-

ios had the same organization as previously. The correlations were presented via a series of

observations. Each observation was displayed on a separate screen. For each one, the names

of the variables and their levels (high ⁄ low) were displayed. People could watch the observa-

tion as long as they wanted and then had to click on a button to go to the next observation.

Fig. 5 presents an example observation. The program also enabled us to check automatically

whether people understood the causal models, by asking questions about how the variables

are causally related. Participants were not allowed to move on to the following screen if

their answers did not fit the causal models previously presented.

5.3. Design

This experiment consisted of the same six conditions as Experiment 2. Each participant

was exposed to each of the six conditions using a different scenario.

Table 4

Composition of series of observations, Experiment 3

Types of observations Number in long series Number in short series % of all cases

A+ B+ C+ 24 2 40%

A) B) C) 24 2 40%

A+ B+ C)
A+ B) C+
A+ B) C)
A) B+ C+
A) B+ C)
A) B) C+

2

2

2

2

2

2

1 at random 20%

Total 60 5 100%
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5.4. Results

As shown in Fig. 6, causal models had an effect on probability judgment,

F(5, 590) = 16.98, MSE = 403, g2
p = .12, p < .001, and did not interact with the length of

the series, F(5, 590) = 1.0, MSE = 403, g2
p = .01, p = .41. Results indicate no effect of the

length of the series of observations at all F(1, 118) = .05, MSE = 939, g2
p = .00, p = .83.

Planned comparisons were used to test our specific hypotheses. Causal chain models led to

higher judgments than common-cause models, t(119) = )6.38, d = 0.58, p < .001. Predic-

tive chains led to higher judgments than diagnostic chains, t(119) = 26.86, d = 2.45,

p < .001. Direct chains led to a higher probability than indirect chains, t(119) = )3.47,

d = 0.32, p < .001. The control condition showed higher ratings than the common-cause

condition, t(119) = 3.03, d = 0.28, p = .003, but lower than predictive direct,

t(119) = )5.95, d = 0.54, p < .001, or indirect chains, t(119) = )5.90, d = 0.54, p = .01.

Fig. 6. Mean probability judgments with 95% confidence intervals, as a function of causal models, Experiment 3.

Fig. 5. Example of an observation, Experiment 3.
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As in previous experiments, analyses confirmed the existence of individual differences.

Using the same two-step classification procedure as before, two different groups emerged,

Cluster 1 (n = 47) and Cluster 2 (n = 73). The two clusters were again not differentiated

by their mean values but by the patterns of judgments over the conditions, as shown by

the Condition · Cluster interaction, F(5, 590) = 20.5, MSE = 346, g2
p = .15, p < .01

(see Fig. 7).

Within each cluster, the conditions were rated differently, F(5, 230) = 24.1, MSE = 525,

g2
p = .15; F(5, 360) = 5.57, MSE = 232, g2

p = .07; all p < .01. As in Experiment 1,

Bonferroni post hoc tests showed that predictive inference led to higher judgments both

when comparing direct and indirect chains in Cluster 1 (p < .01, d > 0.72). In contrast, in

Cluster 2 participants, diagnostic and predictive inferences were not significantly different

whether direct or indirect (d < 0.03).

Thus, as in Experiment 1 and 2, one group of participants was influenced by the direction

of the inference (39% of the participants), whereas another group was sensitive only to the

global structure, common cause versus causal chain (61% of all participants). The third

rating pattern observed in Experiment 1 did not appear in Experiment 3.

5.5. Discussion

Experiment 3 replicated the pattern of results of Experiments 1 and 2 implying that the

effect of causal structure is not sensitive to the presentation format of the data: verbal sum-

mary (Experiments 1 and 2) or a series of events (Experiment 3). Moreover, the number of

data points presented did not have a significant effect on probability judgments.

In Experiments 1–3, judgments were lower than we expected based on the data presented.

One explanation for this is that participants assumed that C was low when it was not

Fig. 7. Mean probability judgments with 95% confidence intervals, as a function of experimental conditions and

clusters, Experiment 3.
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mentioned in a statement saying A was high. In this case, the probability that B was high

given that A was high and C low was 50%. Similarly, in some cases, people may have

inferred that C was high. For example, if nothing was said about the quality of sleep, people

may have inferred that it was normal (high). To examine these possibilities, we replicated

Experiment 3 with a group of 30 people in which we mentioned that C was unknown and

could be either low or high. Results indicated no significant difference with judgments

obtained in Experiment 3.

These three experiments support the idea that probability judgments are strongly influ-

enced by causal models. More specifically, the easier causal explanations are to construct,

the more they reduce uncertainty in the relations among their constituent events. In addition,

they replicate previous findings of causal asymmetry (Fernbach et al., 2011).

A question that remains open is to determine whether these judgments can be fit by

a rational model. A common normative standard relating causal structure and covari-

ational data uses causal graphical models to describe the structure of causal relation-

ships (Pearl, 2000; Spirtes et al., 1993). Under this account, causal structure is

understood to explain statistical relationships between causes and their effects, so that

evidence from a learner’s observations and actions can be used along with other kinds

of information to recover underlying causal relationships. In cases where explicit infor-

mation about causal structure is available, it is integrated with covariation evidence to

give a detailed picture of the underlying structure, which can be used to provide condi-

tional probabilities.

There are several ways by which causal graphical models can be used to understand cau-

sal learning. We will focus on the Bayesian approach as it provides clear prescriptions for

how prior knowledge and evidence should be combined and has been used extensively to

understand causal learning in humans. The Bayesian perspective on causal learning posits

that learners use prior knowledge or beliefs combined with evidence—typically observa-

tions of events or the results of interventions—to make inferences about variables that are

not directly observable, such as what causal relations are present, or what parameters or

causal strengths govern a causal relationship that is known to exist (e.g., Lu, Yuille, Lilje-

holm, Cheng, & Holyoak, 2008). We will examine the predictions that follow given only

weak constraints, specifically that causal relations are generative, as is implied by our exper-

imental cover stories.

Each of the three causal structures can be expressed as a causal graphical model, in which

edges run from causes to their direct effects (see Fig. 8).

Given priors—assumptions about the probable values of parameters w determining

marginal and conditional probabilities before any data are observed—such a model yields

predictions corresponding to the judgments participants were asked to make, including the

conditional probabilities P(A|B) and P(B|A) for the chain structure A! C! B and P(B|A)

for the common-cause structure A C! B.

More precisely, given a data set d composed of observations of the values of the three

variables A, B, and C and a causal structure s, the probability of B given A is
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PðB ¼ 1jA ¼ 1; d; sÞ ¼
Z
w

PðB ¼ 1jw;A ¼ 1; sÞpðwjd; sÞdw:

P(B = 1|w, A = 1,s) takes one of three simple forms, depending on the causal structure, as

described later. The posterior distribution of the parameters, p(w|d,s), can be recovered

using Bayes’ rule:

pðwjd; sÞ / Pðd; sjwÞpðw; sÞ;

where P(d,s|w) = P(d|w,s)P(s|w), and P(s|w) = P(s), so likelihood is determined by

P(d|w,s), or the probability of the observed data given a causal graphical model with

parameters w.

5.5.1. Evaluating causal graphical models
In this section, we will demonstrate that, given the data and causal structures that par-

ticipants saw in Experiments 1–3, causal graphical models with generative parameteriza-

tions—that is, in which effects are more likely in the presence of their causes—make

predictions that are systematically inconsistent with the judgments obtained in our

experiments.

Recall that our experiments elicited three kinds of probability judgments: predictive judg-

ments in chains, or P(B|A) when A causes C and C causes B; diagnostic judgments in chains,

or P(A|B) under the same relation; and common-cause judgments, or P(B|A) when C causes

both A and B. In general, people offered lower probabilities in the common-cause cases than

in the other two, and we will show that a causal graphical model with generative causes

cannot fit this pattern given the data that participants saw.

We will show first that common-cause judgments always fall between diagnostic and

causal chain judgments for the same parameters in three-node causal graphical models,

Fig. 8. Chain and common-cause structures.
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and that the parameters are the same given the data our participants saw, subject to weak

assumptions. More formally, we will show that if Pchain is the causal chain probability,

Pcommon is the common-cause probability, and Pdiagnostic is the diagnostic probability esti-

mate, then for the data that participants saw, regardless of what prior one chooses, we can

express the relevant probabilities as follows: the probability that an effect occurs given its

cause does not occur is p0, the probability that an effect occurs given its cause occurs is

p1, and the probability that a variable without an observed cause occurs is r. These proba-

bilities cover all possible parameterizations for causal graphical models when each effect

has at most one cause, as is the case here. Using this notation, the conditional probabilities

of interest are

Pchain ¼ p0 � p0p1 þ p2
1;

Pdiagnostic ¼
rðp2

1 þ p0 � p0p1Þ
rðp1 � p0Þ2 þ p0ðp1 � p0 þ 1Þ

;

Pcommon ¼
rðp2

1 � p2
0Þ þ p2

0

rðp1 � p0Þ þ p0
;

We show in Appendix B that this relationship between probabilities is true whenever

p0 < p1. In other words, it is true if an effect is more likely given its cause than in the

absence of its cause. This result is only applicable to our experiments if the distributions of

r, p0, and p1 are the same for all three structures given the same data and priors. This equal-

ity does hold, as can be shown by noting that the posterior distributions of r, p0, and p1, for

all variables and causal relations depend only on a prior and a likelihood term. The likeli-

hood term is driven by data that are identical across the three causal structures and all pairs

of variables, and the prior should be insensitive to the causal structure. Specifically,

P(r|data) is determined by the number of times the corresponding variable takes high and

low values, which is equal across the different structures, and p0 and p1 depend on the rates

of different values for cause and effect pairs, which is also equal across different structures.

See Appendix B for details. The consequence of these results is that Bayesian inference on

generative causal graphs cannot explain the human tendency to assign low probabilities to

Pcommon in our experiments.

5.6. Conclusion

This mismatch poses a challenge to the idea that Bayesian inference applied to causal

graphical models constitutes a complete model of causal inference in humans. One answer

to that challenge is that the participants’ expectations about the rates of failure and hidden
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causes depend on the cover stories in such a way that they are not independent of the causal

structure. Although this possibility cannot be entirely excluded, a hypothesis of that form

could explain a wide range of different results, and given the robustness of the effect across

cover stories, it does not seem likely. Another answer is that participants are making infer-

ences at a more abstract level than causal graphical models, and learning, for instance, about

the category membership of the variables at hand. This may be true, but at least one version

of that explanation—that variables that share some causal roles are likely to share others (as

might be suggested by the infinite relational block model, e.g., Kemp, Tenenbaum, Griffiths,

Yamada, & Ueda, 2006)—would predict higher conditional probability judgments in the

common-cause scenario. A third answer is that the parameterizations used here were not

appropriate. Given that our analytical results apply to any strictly generative parameteriza-

tion, and that our cover stories indicated that all causes were generative, this seems unlikely.

Absent a plausible and parsimonious computational-level explanation for the judgments in

Experiment 3, it may be necessary to turn more attention to the time and memory constraints

under which people operate when making causal inferences, and, by extension, revisit

models that emphasize the processes and representations that people use. This is what the

explanation-based approach tries to do.

6. General discussion

In this study, three experiments showed that causal models had a direct effect on proba-

bility judgment. More precisely, changing the causal links between hypotheses and evidence

changed the perceived probability of a target event. Despite identical correlations between

the variables, results indicated higher conditional probability judgments for causal chains

than for common-cause structures, higher for predictive than diagnostic chains, and higher

for direct than indirect chains. These results obtained whether data were presented verbally

or by showing a series of observations. We conclude that probability judgment in our

paradigm was largely determined by causal explanations.

In order to evaluate the possibility that the role of the causal models was to introduce

prior beliefs into the inference process, we considered Bayesian inference applied to causal

graphical models, the implicit or explicit foundation of many normative models of causal

inference (Cheng, 1997; Griffiths & Tenenbaum, 2005; Lu et al., 2008), and which incorpo-

rated both hypothetical prior knowledge and the data to generate predictions. We showed

that such a model predicts that probability judgments in our common-cause condition should

have been between those in our predictive and diagnostic conditions. This is not what we

observed. Instead, judgments were consistently lower in the common-cause condition.

Although the possibility exists that some other rational analysis could explain our findings,

we believe they suggest that, when both data and causal beliefs are available, data may well

influence causal beliefs, but it is causal beliefs that determine judgment, and data play no

further role.

The fact that judgments in the common-cause case were so low was not anticipated by

any previous account of causal inference. This effect seems fairly reliable in the sense that

the cluster where this effect was most salient—namely Cluster 1, represented 40% of the
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participants in Experiment 1, 36% in Experiment 2, and 39% in Experiment 3. When the

two variables share a common cause, participants have to make two types of inference: one

diagnostic and one predictive. When the variables are linked by a nondirect diagnostic

chain, participants have to make two diagnostic inferences. The fact that predictive infer-

ences are easier to draw than diagnostic inferences (Fernbach et al., 2011; White, 2006)

would lead to the expectation of higher judgments with a common cause than with indirect

diagnostic chains. However, our results indicate the opposite pattern. Perhaps the absence of

a direct causal path from evidence to hypothesis in either the predictive or diagnostic direc-

tion made it difficult for participants to imagine how to update belief from evidence to

hypothesis and the resulting confusion led to lower judged probabilities. Even if the correla-

tion between the two variables was high, it may have been neglected because it did not

signify a causal pathway. Another possibility is that an extra cognitive cost is imposed for

changing the inference direction while following the path from the evidence to the target.

When making the judgment, such increased difficulty could lower the final estimated

probability.

On the basis of three experiments, we conclude that people rely on causal explanations to

make their judgments. A Bayesian learning model was tested to try to explain how people

updated their beliefs, but its predictions were inconsistent with our pattern of results. People

are known to be sensitive to causal structure when making decisions. This has long been

known by philosophers like Nozick (1993) who proposed a causally based decision theory

that inspired a more psychological proposal by Hagmayer and Sloman (2009; Sloman &

Hagmayer, 2006). Hagmayer and Sloman propose that people use causal structure along

with a representation of intervention to work out the likelihood of outcomes when consider-

ing options. They report multiple supportive experiments, although most of the experiments

focus on qualitative predictions of the theory. Overall, there is good reason to believe that

people excel at working out consequences of actions and events using qualitative causal

reasoning. People’s ability to update their causal beliefs and work out likelihoods with

quantitative precision is more suspect.

According to Ajzen (1977), people focus on qualitative data and neglect quantitative

data. Indeed, causal data are simple and easy to use. This idea is supported by the

main results of our experiments and we agree with Ajzen that people rely on causal

explanations when judging the probability of an event. However, he suggests that statis-

tical data can be used if no qualitative data are present. In our experiments, this

occurred in the control conditions in which participants were not presented with a cau-

sal model. Results indicated that people underestimated the conditional probabilities

either because they neglected the data or misused them. Ajzen proposed that statistical

data will be considered if they have a causal frame. This condition is satisfied when

the correlation is high and variables are linked by a direct causal chain. In this condi-

tion, we found that people underestimated raw probabilities too but less than in the

other conditions. In sum, we did not find cases where statistical data were used prop-

erly but judged probabilities were close to raw probabilities when the data presented

were easily explained by the causal structure.
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Probability judgments in our experiments were consistently low. In the first three

experiments, the probability of B knowing A was 87% based on the statistical informa-

tion alone, but judgments were around 50–60%. People might have focused on pre-

sented cases where A and B had different values and therefore perceived correlations as

being lower than they actually were. Another possibility is that people may have found

it hard to compute a conditional probability. For example, it is possible that they esti-

mated the ratio of the number of cases where A and B were high to the total number

of cases. Participants in these experiments may also lack mathematical skills. Indeed,

our experimental participants were students in the humanities, who may privilege quali-

tative over quantitative reasoning.

7. Conclusion

The simplest explanation for our results is that people rely on causal explanations to

make their judgments and, under the conditions of our experiments, neglect covariational

data. Neglect of covariational data has been reported in the literature on psychodiagnosis

(Chapman & Chapman, 1969) and on argument strength in discourse (Brem & Rips, 2000).

People also neglect covariational data when learning causal structure (Lagnado, Waldmann,

Hagmayer, & Sloman, 2007) perhaps because they focus too much on local computations,

neglecting global properties of the distribution of data (Fernbach & Sloman, 2009). In learn-

ing, several other cues to causal structure are available: temporal order and timing, spatial

contact, instruction, and so on. In judgment, the alternative to appealing to covariation is to

appeal to knowledge about the antecedents or consequents of the object of judgment, a cau-

sal explanation.

Notes

1. Strictly speaking, it is possible to construct a published Bayesian model that is insensi-

tive to the number of data points, but for most patterns of data—including those that

we give in our experiments—this requires unusual priors that are not used by any

Bayesian account of causal inference.

2. The correlation data indicate the following: P(A[B[C) = 40%, P(�A[�B[�C) = 40%,

P(A[B[�C) = 3.33%, P(A[�B[�C) = 3.33%, P(A[�B[C) = 3.33%, P(�A[B[�C)

= 3.33%, P(�A[�B[�C) = 3.33%, P(�A[�B[C) = 3.33%. Therefore, A has a prob-

ability of 50% and the co-occurence of A and B has a probability of 43.33%. Thus, the

conditional probability of B knowing A is 43.33 ⁄ 50 = 86.66%.
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Appendix A

Scenarios used in Experiment 1 (in the judgment task, A is known, B is the uncertain

event, and C is not mentioned)

Variables

Scenarios A B C

1 Quality of sleep Quality of muscle tone Level of magnesium in

the blood

2 Quality of products Number of employees Sales objectives

3 Activation of a valve Activation of a wheel Activation of a piston

4 Sweating Impulsiveness Hormone activity

5 Competence in English Negotiation skills Frequency of international

missions

6 Level of iron in the blood Irritability Level of teranin

(neurotransmitter)

7 Employment Housing construction Number of inhabitants

8 Well-being at work Bonus Efficiency

Scenarios used in Experiments 2 and 3

Scenarios A B C

1 Quality of sleep Muscle tone Level of magnesium

2 Flow of water Ground conductivity Water pressure

3 Nerve conduction Level of potassium Quantity of astrocytes

4 Self-efficacy feeling Perseverance Interns attributions of success

5 Heat capacity Temperature Pressure

6 Level of iron in the blood Irritability Level of teranin

(neurotransmitter)
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Scenarios used in Experiment 4

Scenarios A B C

1 Level of deldrin (substance in organisms) Liver necrosis Posopathy (disease)

2 Anxiety Thermotaxis Level of serotonin

3 Depressive symptoms Overweight Diabetes

4 Level of xéroxin (substance in organisms) Pupillary diameter Heartbeat

Appendix B

This appendix contains a proof that for the causal structures and data we have considered,

Bayesian inference on causal graphical models cannot reproduce the pattern of conditional

probabilities offered by experimental participants.

Specifically, we show that if Pchain, Pcommon, and Pdiagnostic correspond to probabilities

solicited from our participants for causal chains, common causes, and diagnostic chains,

respectively, then causal Bayes nets with generative (e.g., noisy-OR and additive linear)

parameterizations require that

Pchain � Pcommon � Pdiagnostic _ Pchain � Pcommon � Pdiagnostic ð1Þ

in contrast to our data, in which people judge Pcommon to be lower than Pdiagnostic and Pchain.

Our demonstration has two parts. In the first, we show that when different structures share

the same probabilities of exogenous causes and effects given their causes, Expression 1 is

true. In the second, we show that the data given to participants have the same likelihoods

across all edges in the three structures as a function of those probabilities, which implies that

Expression 1 holds in general as long as we assume a prior that is indifferent to the identities

of the specific variables.

We will represent ‘‘low’’ and ‘‘high’’ values for variables with 0 and 1, respectively. Let

p1 denote P(Y = 1|X = 1) where X is a cause of Y, let p0 denote P(Y = 1|X = 0), and let r
denote the rate at which exogenous variables—those lacking an observable cause—are

equal to 1. We assume that p0 and p1 are the same across different edges of the chain and

common-cause structures, an assumption we return to later.

If S is a causal structure that can be either A fi C fi B (‘‘ACB-chain’’), or

A ‹ C fi B (‘‘C-cause’’), then

Pchain ¼PðB ¼ 1jA ¼ 1;S ¼ ACB� chainÞ

¼
P

c PðB ¼ 1jC ¼ cÞPðC ¼ cjA ¼ 1ÞPðA ¼ 1ÞP
c

P
b PðBjC ¼ cÞPðC ¼ cjA ¼ 1ÞPðA ¼ 1Þ

¼p0 � p0p1 þ p2
1

B. Bes et al. ⁄ Cognitive Science 36 (2012) 1201



Pdiagnostic ¼PðA ¼ 1jB ¼ 1;S ¼ ACB� chainÞ

¼
P

c PðB ¼ 1jC ¼ cÞPðC ¼ cjA ¼ 1ÞPðA ¼ 1ÞP
c

P
a PðB ¼ 1jC ¼ cÞPðC ¼ cjAÞPðAÞ

¼ rðp2
1 þ p0 � p0p1Þ

rðp1 � p0Þ2 þ p0ðp1 � p0 þ 1Þ

Pcommon ¼PðB ¼ 1jA ¼ 1;S ¼ C� causeÞ

¼
P

c PðA ¼ 1jC ¼ cÞPðB ¼ 1jC ¼ cÞPðC ¼ cÞP
c

P
b PðA ¼ 1jC ¼ cÞPðBjC ¼ cÞPðC ¼ cÞ

¼ rðp2
1 � p2

0Þ þ p2
0

rðp1 � p0Þ þ p0

Part 1: Expression 1 is true for any fixed p0, p1, and r

Our approach will be to take arbitrary valid values for p0 and p1 and show that Expres-

sion 1 is true for all valid values of r.

The terms Pchain, Pdiagnostic, and Pcommon are all continuous functions of r if p1 > p0, so if

Pcommon = Pchain at exactly one value of r given by r¢, then any inequality that holds

between Pcommon and Pchain for some r > r¢ is stable, in that it must hold for all r > r¢. Simi-

larly, inequalities between Pcommon and Pchain are stable for r < r¢. If Pcommon = Pdiagnostic

only at that same r¢, then the same stability relationships hold for those variables. We will

show that for some r > r¢ and for some r < r¢, Expression 1 is true, so that total order of all

three terms is stable: Pcommon does not change its ordering relative to Pchain or Pdiagnostic;

and Pchain and Pdiagnostic cannot change their relative ordering without doing so relative to

Pcommon. As a result, Expression 1 is true for r > r¢, r < r¢, and r = r¢ (in which all three

terms are equal), for arbitrary p0 and p1.

If we solve Pcommon = Pchain for r, we obtain r0 ¼ p0=ð1� p0 þ p1Þ: Solving

Pcommon = Pdiagnostic yields the same unique solution, assuming that r, p0, and p1 are valid

probabilities and p0 < p1. This shows that orderings between Pcommon and Pchain and

Pdiagnostic are stable for all r < r¢ and r > r¢. Letting r = 1, we find that Pcommon = p1,

Pchain ¼ p0 � p0p1 þ p2
1, and Pdiagnostic = 1, implying that Pdiagnostic ‡ Pcommon ‡ Pchain.

Letting r = 0, Pcommon = p0, Pchain ¼ p0 � p0p1 þ p2
1; and Pdiagnostic = 0, implying that

Pdiagnostic £ Pcommon £ Pchain. Thus, for arbitrary valid p0 and p1, and r, the common-cause

probability falls between the causal and diagnostic chain probabilities.
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Part 2: The distributions of p0, p1, and r are identical across graphs and edges

The above result would not support our central claim if p0, p1, and r differed in certain

systematic ways between the different experimental conditions or across edges in a single

causal graphical model, which is why we must also show that the distributions of p0, p1, and

r can reasonably be expected to be the same in the three conditions and across all edges.

We have no reason to believe that people’s priors over p0, p1, and r systematically vary

with causal structure or the identities of the given variables as we are considering several

different cover stories. Consequently, we assume that differences in the posterior distribu-

tions for the parameters depend only on the data, via likelihoods.

We focus here on the case where participants were given event data, which is less subject to

ambiguity in its interpretation than statements about correlations. For all three structures, the

influence of r on the likelihood of the events depends only on the value of the exogenous vari-

able, which takes a high value in half of the cases regardless of the structure, meaning that the

posterior distribution of r does not vary across the three different structures. Similarly, p0 and p1

influence the likelihood of the data only via the values of the two variables on the corresponding

edge, which have an identical pattern between structures and between edges of a specific struc-

ture. Consequently, the posterior distributions are the same for all edges and exogenous variables

across all structures, implying that the result in Part 1 is generally applicable to our data.
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